
UNCLASSI FlE1.

DEFENSE DOCUMENTATION CENTER
FOR

SCIENTIFIC AND TECHNICAL IN':ORMATION

CAMERON STATION, ALEXANDRIA, VIF"GINIA

U NCILASSI FIED

NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any -'ay
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.

IMI

DOC

AUU 16

to-TISIAB

I= LAW
6~1

SIMULATION OF DECISION SYSTEMS)

Papers and Notes j

Taken from a seminar sponsored by the

yst Sciences Department of/

The MITRE Corporation

Chairman: H. W. Adams Edftor 'Carla-Mae Festa'.0;',1
-H. W. Adams o,

62

_ TMITRE
BEDFORD, MASSACHUSETTS

The Information in this Special Report has been A n 3O9

approved for public dissemination by the Office Air Forc Contract FJ6003952

of Security Review, Department of Defense.

FOREWORD

On June 6th, 7th, and 8th, 1961 the System Sciences Department of The

MITRE Corporation sponsored the first seminar on "Simulation of Decision

Systems. " The seminar was directed towards the development of general-purpose

simulation models of decision-making systems of the class represented by military

command and control systems.

Four papers were presented, each of which was followed by an informal

discussion among the participants about the paper and allied matters. This report

includes the papers and those comments we felt were most pertinent.

The participants were from MITRE and from other organizations who had

interest and/or experience with simulation techniques and command and control

systems. The backgrounds of the participants were varied; some were trained in

psychology, some in engineering, others in mathematics, and still others in

fields as varied as anthropology and history.

The first paper was given by Geoffrey Gordon of the IBM Advanced

Systems Development Division in White Plains, New York. His paper discusses

the generalized modeling technique he and others have developed for the simulation

of traffic-handling systems. This technique represents a major advance in efficient

handling and representation of system interactions and is, perhaps, the most highly

developed technique available.

Next, Irving Wallach of the System Development Corporation group at

Paramus, New Jersey, discussed the functional model of a specific command and

control system, the Air Force Strategic Air Command Control System (SACCS).

This paper indicates the problems associated with modeling complex systems as

well as an appreciation of the complexity which characterizes the decision systems

with which we are dealing.

Ii

In the next two papers Harold Adams, Charles Morrill, and Peter Ten Eyck

of The MITRE Corporation present work done on the development of generalized

modeling techniques applicable to the design of complex military decision systems.

The theoretical approach and preliminary stages of the modeling technique are given

together with a specific application of this approach to a problem which occurs in an

Air Force command and control system. Essentially, the attempt is made to

apply the type of technique presented by Geoffrey Gordon to the problems of modeling

systems similar to the system discussed by Irving Wallach.

Editors: Carla-Mae Festa

Harold W. Adams

iv

iI

PARTICIPANTS

Robert L. Barringer Operations Research Group
Arthur D. Little, Inc.
35 Acorn Park
Cambridge 40, Massachusetts

Lee S. Christie Advance Study Project
System Development Corporation
2500 Colorado Avenue
Santa Monica, California

Paul Coggins Arthur D. Little, Inc.

35 Acorn Park
Cambridge 40, Massachusetts

Geoffrey Gordon Advanced Systems Development Division

IBM Corporation
2 William Street

White Plains, New York

Paul Hildebrandt System Development Corporation
The MITRE Corporation
P. 0. Box 208
Bedford, Massachusetts

William M. Jones, Col., USAF Joint War Games Control Group
Joint Chiefs of Staff
Pentagon, Room, 2B 867
Washington 25, D. C.

Peter Kuegel Arthur D. Little, Inc.

35 Acorn Park
Cambridge 40, Massachusetts

Andrew Molnar Special Operations Research Office
4501 Massachusetts Avenue, N. W.

Washington 16, D. C.

Sidney C. Rome Mathematics & Operations Research Staff
System Development Corporation
2500 Colorado Avenue

Santa Monica, California

v

Warren S. Torgerson Massachusetts Institute of Technology
Lincoln Laboratory
P. 0. Box 73
Lexington, Massachusetts

Irving A. Wallach Operations Design Branch
System Development Corporation
567 Winters Avenue
Paramus, New Jersey

Harry Wolfe Arthur D. Little, Inc.
35 Acorn Park

Cambridge 40, Massachusetts

MITRE REPRESENTATIVES

Andrew C. Bayle V. P. Technical Operation's Office

Harold W. Adams System Sciences Department

James H. Burrows Computer Applications Department

Jack Dominitz SAGE Design & Testing Department

Carla-Mae Festa System Sciences Department

June Karlson Advanced Planning Department

Charles S. Morrill System Sciences Department

Charles V. Riche, Jr. Data Processing Development Department

Peter H. Ten Eyck System Sciences Department

David F. Votaw, Jr. System Sciences Department

F

vi

t

CONTENTS

Page

I. An Introduction to General Purpose 1
System Simulation Programs

II. A Functional Model and its Utilization in the 33
Design of a Complex System

III. Generalized Modeling of Complex Systems 35

IV. Case Study: Simulation of a Logistics Problem 49

APPENDIX A. Flow Chart of Case Study A-1

APPENDIX B. Details of the Logistics Problem B-1

APPENDIX C. Contributors C-1

vii

t.
rt

I

AN INTRODUCTION TO GENERAL PURPOSE SYSTEM SIMULATION PROGRAMS

Geoffrey Gordon

IBM Corporation, White Plains, New York

As system designs have become ever more complex, designers have been

placing increasing emphasis on the use of digital computers to simulate systems.

This development has brought with it the establishment of system study groups

containing both engineers and programmers; an enforced union between people with

different backgrounds and skills that has not always been happy.

Two major difficulties can arise from the differences in the requirements of

engineers and programmers in carrying out their jobs. First, the pace at which

they can proceed differs greatly, particularly in the early stages of a project.

Engineers can usually produce a large number of possible designs or modifications

that may meet the requirements of the system. Writing programs, however, takes

time and it is at precisely those places of a project where designs are changing

rapidly and the engineer needs the most help from simulation that the programmers

are unable to keep up .with the pace.

Second, even when the main outline of a system has been established, there is

difficulty in getting sufficient flexibility in a simulation program. Initially at least,

many details of a system are vague and may be unimportant to the engineer; but a

program must be complete and precise before it will run and the programmer needs

a complete specification of these details. It is virtually impossible to see beforehand

all the possible changes of detail that may occur, and even if it were possible, it

would be very difficult to write a program in such a way that it could make allow-

ances for such changes. While the need to change various parameters of the system

can be foreseen and allowed for, possible changes in the organization of a system

are hard to foresee. Frequently what seem to the engineer to be minor changes in

I:
1

2

the structure of a system turn out to require major reorganizations of a

simulation program.

System study work is essentially a reiterative process. The performance

of a proposed design is compared with the system requirements; the difference

is used to propose a new design, and this process is repeated until a successful

design is reached. Time taken in changing simulation programs to follow design

changes slows down the progress of a project or, more often, results in deci-

sions being made without the benefit of simulation.

These various difficulties are not helped by the fact that engineers and

programmers speak different languages. When the actual system design and the

simulation model differ, there will be many times when a satisfactory compro-

mise that would minimize the changes needed in a program is overlooked

because no one person clearly understands the significant factors of both the

design and the program, One way of overcoming these difficulties is to make

use of general purpose simulation programs.

The process of producing a simulation study for a digital computer involves

two major phases. First, a model of the system to be studied must be con-

structed and then a program that embodies the logic and action of the model

must be written.

The model is a set of equations and logical statements that expresses the

relationship between the components of the system and the various parameters

associated with the system. The form the model takes and the mode of expres-

sion used to describe it depend very much upon the individual engineer setting

up the model. Similarly, the form taken by the program written to implement

the model depends upon the individual programmer.

Conceptually, the procedure for producing a simulation program falls into

two clear parts. In practice, it usually involves a great deal of interaction be-

tween the engineer and programmer, thus introducing the possibility of misunder-

standings and misconceptions that can lead to difficulties.

3

If some formal manner of describing the model can be established, then it is

possible that the process of putting together a program can be made more automatic

and consequently less time consuming. This approach implies that some formal

language for describing models can be established which will serve the purposes of

both the engineer and the programmer. With such a language, a fair division of

labor can be brought about, with the engineer being responsible for finding a satis-

factory description of systems within the framework of the special language and the

programmer being responsible for producing a program that operates with the

language.

The program must be able to deal with any logical statement that may be made

in the language, so that it can be used to simulate any system that can be described

within this language. To write such a program is a much more severe task to place

upon programmers than would be the writing of a simulation program for an indi-

vidual system. However, the same program would be applicable to all systems

that can be described in the program language.

Such a program, therefore, will be general-purpose and it is in this sense

that the term general-purpose is used. A general-purpose system simulation pro-

gram can be defined as a program that is capable of automatically producing a

representation of a system from a description of the system expressed in terms of

a fixed well-defined system language associated with the program.

In considering what type of language should form the basis of a general-

purpose program, the use of block diagrams immediately comes to mind. The

majority of people asked to describe a system will resort to a diagram. It is a mode

of description that is mutually understood by the many people with different back-

grounds who must be familiar with the system. There are many names for such

diagrams that describe systems, block diagrams, flow charts, sequence diagrams,

node diagrams directed graphs; but the essential meaning is the same.

A block diagram consists of a set of boxes drawn together by lines; the indi-

vidual actions of the system are described in the boxes and the lines joining the

boxes give you the sequence of events going from step to step. There may be

ii

4

points in the block diagram where there are decisions to be made in order to

determine the alternative lines of development.

Although the structure of block diagrams is fairly formal and well understood,

the manner in which the actions of the system are described within the boxes varies

greatly from system to system and from person to person. The precise way people

describe what's going on inside the boxes is very flexible. Each person has his own

way of describing these things. Thus, at first sight, there appears to be little

formality in the manner of describing systems and consequently there is little hope

of finding a well-defined language. However, on a closer look, many common

actions can be identified, at least within the area of each specific class of systems.

It is apparent that block diagrams do provide an adequate language for engi-

neering descriptions of systems. To make a language suitable for programming

purposes, the manner in which block diagrams are constructed and described must

be defined carefully, so that the meaning of each block and its relationship to other

blocks is unambiguous. The requirements are, therefore, to provide a well-defined

set of basic block types, each with a specific meaning, and to determine a set of

conventions controlling the structure of block diagrams.

Many questions arise when considering the possibilities and merits of such an

approach to system simulation. The first obvious question is whether, in fact, a

suitable language can be found; that is, can you find enough basic block types to

describe the actions of a system? If you can, how do you go about it? How do you

locate this ?

Another big question is: How wide a class of systems can a technique like this

be expected to cover? You might find that you can achieve this objective within one

particular type of system but once you move from that type of system this language

cannot be expanded to cover another area of systems.

Then there is always the question of whether or not you can include an ade-

quate amount of detail in any one system simulation with this approach. Also, will

the program be ample to reduce significantly the programming effort required

for an individual simulation?

5

There are many such questions, and inevitably, in designing a general-purpose

program, many compromises must be made which will emphasize one aspect of the

program's usefulness at the expense of another.

In a block diagram description of a system the basic concept is of some unit of

data moving from block to block at certain points in time. The representation of this

unit of data in the simulation will be referred to as a transaction. The interpretations

to be placed upon the transaction in any particular simulation depends upon the sys-

tem being simulated. It might be a message in a communication system, a human

being or a vehicle in a traffic study, a pulse in a circuit or any one of many other

possibilities. The precise interpretation to be placed upon a transaction depends

upon the system you want to simulate.

We want to formulate requirements to determine a set of block types each of

which has some well-defined property and to establish some formal mechanism for

describing interconnections between these boxes such that we can set up and describe

the structure of a flow chart. Thus, we hope to be able to describe systems in this

language. With this description we should be able to produce a program that will

accept any logical statement in the flow diagram or block diagram language and

assemble a model automatically.

Given rules for creating transactions and given a description of a block dia-

gram, the action of the simulation program will be to move the transactions through

the block diagram step-by-step much in the manner in which a "throw-down" study

would be conducted. A "throw-down" study is a term that's used in the communica-

tion field for doing simulations by hand; for example, the writing of information on

cards and shuffling the cards around to follow the successive steps of the system.

This is a technique that has been used very successfully in the study of switching

systems.

So our program will operate by moving transactions from block to block follow-

ing out their progress. For the program to carry out this function when there

are many transactions in the system at one time, the simulation program must

keep a record of the locations of each transaction to know where a transaction

1.

6

is at any point in time. It also has to keep a record of what time it is due to

move from one block to another block.

Certain types of blocks will describe some interaction between the transactions

and an item of equipment associated with the system. It is necessary, therefore, to

introduce the concept of an item of equipment as being some element of the system

which is engaged or occupied by the transactions during the course of their progress.

Again we run into difficulties in that what you define as an item of equipment depends

entirely upon the system. However, there are two important factors that will de-

scribe almost any item of equipment. First of all, an item of equipment is usually

limited in the number of transactions it can handle simultaneously. Secondly, re-

gardless of the action taken by the equipment, it takes a certain length of time to

perform this action. A substantial part of any system study is concerned with ana-

lyzing the influence of these factors upon the performance of the system. The fact

tha' there is a limited number of transactions that can be handled simultaneously

and that it takes a certain length of time to do the equipment's job, results in

bottlenecks. A great deal of system study is a matter of balancing the various

bottlenecks that exist around the system.

Thus, items of equipment are defined as entities which are characterized by

having a capacity, a limit on the number of transactions that can be engaged by the

equipment at any one time, and by the fact that they take a certain length of time to

carry out their actions. Therefore, the program will have associated with it, items

of equipment which will be identified by numbering. Within a given limit the program

will allow up to a given number of items of equipment. It may prove to be convenient

for programming purposes to distinguish between the type of equipment that can

handle only one transaction at a time and the type of equipment that can have

multiple occupancy.

The relationship between the item of equipment of the simulation program and

the components of the system being studied varies from system to system, and in-

deed, may vary within one system. For example, a computer in one system might

be regarded as a single item of equipment. In another system, the major components

7

of the computer such as the memory, the arithmetic unit, the various buffers, the

input-output channels, etc., might be defined as separate items of equipment each

with its characteristic capacity. From this viewpoint the computer is represented

as a conglomeration of items of equipment. Another example is a communication

network with a trunk system connecting two points which may be regarded as a single

item of equipment with a multiple capacity equal to the number of lines. Suppose

there were ten lines in this trunk group, then this would be an item of equipment

with a capacity of ten. From another point of view your study might be interested in

the individual histories of these lines, in which case you will define this trunk group

not as one unit but as ten individual items of equipment, each with a capacity of one.

One of the advantages of this type of general-purpose program is the greater degree

of flexibility.

Some block types will be concerned with engaging equipment during the period

of time in which a transaction occupies the block. Some block types will be simple

in that they result in a transaction engaging an item of equipment during the length

of time that the transaction is in that block. But often the action of the system will

be too complex to express, simply in terms of transactions occupying items of equip-

ment for a period of time. There may be many possibilities for the sequence of

events to be followed once a transaction has gained control of an item of equipment.

The actions of engaging an item of equipment and relinquishing its use should be

embodied in separate block types so that, in terms of block diagrams, any amount of

complexity can be introduced between the point or points at which a transaction

engages and releases the equipment.

J

Certain common elements can be identified with all block types whether they

are concerned with equipment or not. The two most important common elements are

the fact that each action represented by a block takes time and each block (with the

exception of terminating blocks) has a successor or successors. With these common

elements we should have some common mechanism for identifying time and associ-

ating successors with each block type.

(i

So, first of all, with every block type there will be associated a block time

which will represent the length of time the transaction will spend in that particular

block. It obviously would destroy the general-purpose nature of a program to fix the

unit of time. Therefore, time is best expressed in terms of integers with the inter-

pretation of the unit integer to be left to the user of the program. This basic unit

might very well vary from a microsecond in one system to a day in another system.

The block times will not always be well-known. The time taken for the action

described by the block may vary in some arbitrary manner or too little information

may be available to define the time accurately. The best thing to do is to arrange

that this time can vary over some range which represents your best estimate of the-

range of values of time, Sometimes you will know very specifically what the time is,

but usually you will have only an estimate of some type of mean spread. The sim-

plest thing to do then, is to associate with every block a mean (M.) anid a spread

(S.) such that when any transaction enters the block, you can choose a block time for

the particular transaction which lies in the range of mean-minus-spread (Mi - Si) to

mean-plus-spread (Mi + Si). You can simply use a random number in this simple

square law distribution. There will, however, be occasions when more accurate

information about the distribution is known and provision should be made for inserting

such known distributions.

If the time for a block is well-known and precise, you obviously can set the

spread to zero (S i = 0) so that every transaction has exactly the same time. There

will be times when you will want zero time which can be done by setting both the

mean and the spread equal to zero (Mi = S.i = 0). You have zero time for those blocks

that are used as buffers or used as decision points to split the traffic in two or more

directions.

Each block may be a successor to many different blocks and conversely, there

may be more than one successor to a particular block. Some conventions on the

number of possibilities in each case need to be established. The natural way of

specifying the links between blocks, kis by naming at each block the successors to

that block. From the point of view of programming, no difficulty is then presented

4

9

by the multiplicity of possible inputs to a block but it is very convenient to put an

upper limit on the number of possible exits from a block. A limit of two is adequate,

since, by cascading with blocks that have zero block time, it is always possible to

produce any number of possible paths emanating from a single block.

When there is more than one exit, some mechanism must be established for

determining which path will be taken. Sometimes the selection is a random function,

the cascade process where the system sends traffic down one or two routes. You do

not know where any one specific transaction is going, but you do know that a certain

percent of the traffic goes one way and a certain percent goes the other. Each indi-

vidual action may be chosen randomly. Obviously the program can follow this. For

example, you can arrange that you choose between the two alternatives on the basis

of a random number weighted by a probability. You specify the probability of going

down route one and of going down route two. The program then computes a random

number for you, weights it with these probabilities, and selects for you. This type

of selection is quite common in systems and can be widely used in the program.

A second important mechanism for choice is the provision of alternatives.

There may be a principal exit by which a transaction should proceed but in the event

of this path being blocked, because some item of equipment is fully engaged, the

transaction proceeds by way of a second exit.

As an example of how such programs can be applied, consider a program based

on six basic block types. These different block types are illustrated in Figure 1.

Type 1 is represented as an originate block and is a block that creates transactions

and passes them on. For this type of block, time will not represent the length of

time the transaction stays at that box but rather will represent interarrival time or

intercreation time, the interval time between successive creations of transactions.

Type 2 does not involve any equipment; it merely advances the transaction. It

accepts transactions, holds them for a certain length of time, and then passes them

on. This is going to be useful as a buffer more than anything else.

10

BLOCK TYPE

1 ORIGINATE

TRANSACTION

0

2 ADVANCE
TRANSACTI ON

3 D HOLD EQUI PMENT

4 SEIZEEQUIPMENT

5 RELEASE EQUI PMENT

6 OTERMINATE
TRANSACTION

Figure 1. Block Types

"I

11

Type 3 is known as a hold block. A transaction engages an item of equipment

as long as it is in the block. If the equipment is a multiple occupancy type, there

may be any number of transactions up to the limit specified.

Type 4 is the seize block in which a transaction engages an item of equipment

upon entering the block but does not relinquish the equipment upon leaving. This task

is accomplished by Type 5, the release block which effects the telease of an item of

equipment that has been engaged. As mentioned earlier, the separation of these

functions allows you to put any amount of flow diagraming representing the com-

plexity of the system between these two points.

Finally, Type 6 is a terminate block which destroys the transaction after first

taking out certain statistics about it. In the symbolic representation, as shown in

Figure 1 of these blocks, any item of equipment that is involved is noted by the num-

ber of the equipment being placed in a flag attached to the block.

This is a very simple set of block types. The actual written program involves

a great deal more. But even with this simple set, I would like to show you how you

can assemble a system in the hope that this will illustrate the advantages of this type

of approach and what you can expect to get out of it.

As an example of the application of a program based on these blocks, consider

the following system. A computer receives a series of input messages and begins

processing them. For some messages there is no further action when this processing

is complete. For some others, a record must be written on a disc file to complete

processing. A third group of messages requires a record to be read from the file be-

fore the processing is completed and a fourth group requires both the reading of a

record and then the writing of a record. Access to the records in the disc file is

gained by way of one of a number of arms. This is a fairly standard type of data

processing application.

The manner in which the system can be represented with the block types that

have been described is illustrated in Figure 2. In this diagram a transaction is

identified as being a message, and two items of equipment are defined: one is the

LIf1

12

CREATE TRANSACTIONS

BUFFER

HOLD COMPUTER FOR
INITIAL PROCESSING

NO FILE BUFFER
ACTION

AHOLD

AN ARM
1 (DISC FILE)

WRITE BUFFER
RECORD

HOLD COMPUTER

READ BFE
RECORD BUFFER

HOLD-AN ARM1 (DISC FILE)

READ AND WRITE

RECORD TERMINATE TRANSACTIONS

Figure 2. Simple Data Processing System

r
t.

13

computer and the other is the disc file. Suppose the computer is only capable of

operating on one transaction at a time whereas the disc file has three independent

arms each of which, for simplicity, will be assumed to have access to all parts of

the disc file without mutual interference. The capacity limits of the items of equip-

ment will be 1 and 3 respectively.

First of all the diagram shows transactions being created in an originate block

and then passed into a buffer to await initial processing by the computer. In order to

accomplish the initial processing, the transactions must hold the computer for a

certain length of time. Those transactions that need no further processing will now

go to a terminate block representing those messages that have no file action. The

remaining messages will go to a buffer to await the availability of an arm to locate

a record position on a disc. These messages are those falling within one of the

three classes mentioned: the class in which you have to write a record, the class in

which you have to read a record, and the class in which you have to both read and

write P record. Some of the messages need access to the disc file to read and some

need access to write. Thus, each of these has to hold the disc file.

In this example there are two pieces of equipment and the flags attached to the

blocks will identify which piece of equipment is concerned. The computer item will

be numbered as equipment number 5 and the disc file as equipment number 1. After

an arm is located, those transactions, representing records that only require writing

to complete the processing, will then go to the terminate block. The remainder of

the transactions return to the computer for processing. Those transactions that

only need a record to be read before completion of their processing will then go to

the terminate block, while the remaining messages will repeat the process of

engaging an arm to write back a record.

This is a very simple representation of the processing system. I have not put

in all the details because this is only the structure of the flow chart. Times have yet

to be filled in the blocks. You can estimate ')e various times best by finding out how

long you expect this processing to be arid how long it takes, on the average, to gain

access to the disc file. This demonstrates the point of using spreads. For example,

14

access to this file is not a constant time but depends upon the location of the discs.

Thus it is convenient to represent this time by a mean and a spread. The blocks

acting as buffers will have zero time since their purpose is simply to hold trans-

actions which are held up because the equipment is busy. The probabilities with

which transactions go down the various paths control the mixture of message types.

This representation will provide information about the general flow of data and

about the occupancy of the equipment. The effects of various computing speeds or

channel speeds can be studied by means of changing block times. You can study the

effect of different workloads by choosing the probabilities of going down these paths

to represent different mixes of types of messages, or you can change the equipment

capacities to study the effect of processing transactions in parallel or the effect of

the capacity of the disc file.

Suppose it is desired to represent the disc file more fully. Instead of treating

the file as a single piece of equipment, let each arm be defined as a separate piece

of equipment with a capacity of one. Suppose, also, that the input-output channel

between the computer and disc file is introduced as a further piece of equipment. It

is assumed initially to have a capacity of one and the same channel is used for both

The system that will be assumed now is one in which access to the disc requires

that, first, an arm should be engaged and positioned, the record should then be found,

the channel must be engaged to transmit the record, and then the use of the arm is

relinquished for the next transaction.

Assuming the traffic is divided evenly between the arms, the section of the

block diagram concerned with the access to the disc file can be represented as shown

in Figure 3. Here the traffic is shown as being divided between three arms but the

details of only one arm are shown. The same item of equipment corresponding to

the channel appears twice, once for the input and once for output to the disc file.

This same item will also appear in the same way in each line because all arms

share the channel. In addition, the item of equipment corresponding to the arm

appears twice in each line, once for a writing access and once for a reading access.

4

15

QUEUE LINE FORMS

ARM- I

I / CHANNEL

WRITEE

ARM

LCOATER

REECORD

WT RELEASE

ARM

RECORDCARM

L HOLD

REA BUFRLEAEAR

WIERECORD

I

Aiue3 AM s oDicFl

LOCATE

16

The first task to be performed is Lo seize an arm. Here I am distinguishing

between the point at which you take up the arm and the point at which you release

the arm, Once you seize the arm, you locate the record. The time in the "locate"

block represents the length of time it takes to get the arm and position it. This will

then represent the length of time taken to find the record on the disc. The indefinite

length of time is dependent upon where the record happened to be, i. e. , what part

of the cycle it happened to be in.

When the record is located, you need to get hold of a channel to transmit the

message back to the computer. Once the message has been returned to the computer,

the arm is released. If there is any other transaction waiting for the same arm,

then, at the moment the arm is released, the next transaction will immediately pro-

ceed and seize the arm. Having transmitted through the channel, you need to hold

the computer in order to do some computing. At this point, the write-only record

will be removed and you will buffer if you want to come back to do some processing.

Some of the messages representing the read-only messages will be taken out at

that point and will continue on, repeating this procedure of seizing, locating, and

holding the channel.

It can be seen that many other system designs could easily be arranged. The

effect of a multi-line channel between the computer and the disc file can be arranged

by redefining the capacity of that item of equipment. The effect of having separate

channels for each arm or separate channels for input and output can be arranged by

defining separate items of equipment for each new channel. By rearranging the

blocks, you can put together a system in which, for example, the arm is held for

the entire cycle of reading, processing, and writing, instead of being released and

re-engaged. If desired, you can arrange to look at a system that requires the

channel to be used to address the arm before locating the record. At other points,

it would also be possible to expand considerably on the representation of the pro-

cessing carried out by the computer.

I think that with a little imagination you can represent different systems by

simply juggling the blocks. This type of capability is much more in line with what

17

occurs in system design. In many instances in system design the original design

specifications are changed in what appears to be small items of design (for

example, going from a half duplex line to a duplex line). If you had written the

simulation program from the very beginning, it is quite likely that that change

means rewriting the entire program. In this program. it is a fairly simple

matter to make a change in structure of that type.

As one last example, I would like to cover a point that somebody men-

tioned very briefly. In this case we will consider the process of reading and

writing in more detail. Suppose the system is one in which the channel must

be available at the instant the disc is correctly positioned for reading or

writing. If the channel is not available, the transactions must wait a time corre-

sponding to a full disc revolution before another attempt can be made. Figure 4

illustrates a block diagram that would replace the single blocks of Type 2 that

are being used to represent the action of locating a record in Figure 3.

In Figure 4 a transaction passes through a block of Type 4, representing

the seizure of an arm. It takes a time, M1 + SI, to position the arm where

M1 and S1 are the mean time and spread associated with locating an arm. The

transaction passes to a block of Type 2 where it spends a time waiting for the

disc to come into position. If T R is the revolution time of the disc, the mean

and spread at this block are both chosen to be 1/2 TR so that the time for the

transactions to advance varies uniformly between 0 (zero) and T thus corre-

sponding to random positioning on the disc. The instant you decide to position

the arms, the record could be anywhere; you may have just missed it or it may

be just coming up. When the transaction leaves this block, it passes into another

Type 2 with zero time. This block acts as a buffer and since it has zero time,

immediately transmits the' transaction forward in an attempt to engage the

channel represented by block Type 3. However, if the channel is busy, the

transaction is sent to another Type 2 block to wait a time T R 'one disc revolu-

tion) before trying again. The transaction will move back and forth until finally

the correct conditions are met and it manages to get the channel at the same

f

18

MI :S1 SEIZE ARM

-TR: TR LOCATE RECORD

'WAIT ONE
REVOLUTION

TR t-O TRY FOR CHANNEL

LGN HOLD CHANNEL
LEGEND

TR REVOLUTION TIME
OF DISC

Ml MEAN TIME

S3 SPREAD OF TIME

Figure 4. Reading or Writing Records

19

time the record is there. This, I think, is a good example of some of the

decision procedures the program will accept.

These examples have been based on a simple program with only a few block

types. They illustrate, however, several of the main advantages to be gained from

general-purpose programs. In a short span of time you can write down the descrip-

tion of a system in a block diagram form, almost as you are attempting to describe

the system. Without any reference to the program, you can have an exact descrip-

tion of the system and the program will have to accept this description. The pro-

gram does so by having separate sub-routines representing the block diagrams. All

you need is a mechanism for assembling the various sub-routines and going through

the process of moving transactions through the program.

A second major advantage is that this method of building models is flexible

enough to allow the model to expand or contract with extreme simplicity as the sys-

tem being studied changes. In the example, we saw that we were able to take certain

sections of the system and blow them up for further investigation.

One of the unexpected advantages of this approach has been that it imposed a

discipline upon the users in dealing with a basic language. The discipline of having to

think out carefully and to express what the precise actions are as represented by a

particular part of the system, is beneficial in system design work. As you approach

this ideal of a system language, you even can begin to see similarities between

apparently different systems. You begin to see that the logical structure is the same.

Although we can describe a wide variety of different types of systems with such

a program, it is necessary to increase the number of basic block types that have

been employed in these examples, in order to get efficient models with better details.

If you try to describe your sample in terms of these basic block types, eventually

you arrive at some feature of the system which cannot be described in this way. As

you think about why you cannot describe it in this fashion, you will find yourself

automatically defining another block type that will enable you to do whatever the

action is. In this manner we have extended the block types in our program to the

point where about twenty block types seem to be adequate for almost any type of system.

20

General-purpose programs of this type have proved to be efficient in terms

of machine time, but, perhaps most important of all, general-purpose programs

built on the principles described in this paper have considerably increased the

speed with which simulation results can be obtained. They can turn simulation

into an everyday tool for system study.

Mr. Gordon has presented similar material in a formal paper which has been
published in Computers: Key to Total Systems Control, Vol. 20, Proceedings of the
Eastern Joint Computer Conference, 1961, Macmillan Co.

21

ADDITIONAL COMMENTS: GEOFFREY GORDON

ADAMS: Geoff, would you go through the "push-cart" example to demon-

strate the use of your program to handle a particular problem?

GORDON: The following is an example of a supermarket problem:

When shoppers first come into the store, they must get a

basket. Since there are a limited number of baskets, the rule will

be that if they don't get a basket immediately they will wait, but

only for a certain length of time. If they are forced to wait too long,

they will become exasperated and leave the supermarket.

When they get a basket, they shop, and then queue up at the

counters. Two types of shoppers will be distinguished: the general

shopper and the express shopper. The distinction is that the express

shopper can go to one special counter and the remaining shoppers

can go to one of three other counters.

Figure 5 shows how a system of this type can be represented.

Again there is an originate node which is used to create transactions;

in this case a transaction is a human being. The transaction passes

into a buffer to try to get a basket. Baskets, as a set, will be

defined as an item of equipment with a given capacity. Unless the

shopper can get a basket immediately, he goes into another buffer to

wait a given length of time and then tries to get a basket. If the path

is still closed, the shopper waits once more and then tries again.

If he can't get a basket this time, he will go to a terminate node

and leave the store.

I
22

ERMNATE ORIGINATE TRANSACTION

(PERSON LEAVES) (PERSON ENTERS)

WAIT FOR BASKET

EXPRESS SHOPPING

(ONE OF 3GENERAL LINE 1 2 3
SHOPPING CHECK-
OUT FACILITIES)

WAIT IN LINE
FOR FACILITY

' SEIZE FACILITY

(CLERK) /I CHECK-OUT

I I FACILITY

TERSHINAG

-' BAGGING

(LEAVE
SUPERMARKET)

Figure 5. "Push Cart" or Grocery Store ProblemF

23

GORDON: If a basket becomes available before the end of the waiting time,

(cont.) the shopper "seizes" a basket and starts shopping. In the diagram,

the traffic is split into two paths; one for the express shoppers and

one for the general shoppers. The shoppers first go through an

"advance" box which merely represents the shopping time. Here

there are two different times; one for the express shopping and one

for the general shopping,

In this system, the clerks who perform the check-out service

are represented as facilities and thus are items of equipment with

the transactions (shoppers) engaging their services for checking out.

As there is only one express clerk, this facility is represented by one

item of equipment. The facilities for the general shoppers can either

be lumped together as one item of equipment with a capacity of three,

or can be separated into three streams and we can study the behavior

of each.

For this case I have created three separate streams with a sep-

arate clerk for each stream. I have made one distinct assumption for

the general-purpose shoppers; the actions of cashing and bagging are

separate tasks.

First of all, then, I "seize" the service of the clerk, spend some

time cashing, some time bagging, and then "release" his services.

Once bagging is finished, I can then release the basket and leave the

store. Obviously, I could lump the separate boxes representing cash-

ing and bagging into one box, but it's more convenient to show them

separated.The express line is represented differently as I have as-

sumed that there is no need to do any bagging, since there are so few

items in the shopping. All you need is to "hold" the service of the

clerk long enough to do the cashing. Once the cashing is done, the bas-

ket will be released and the shopper will leave the store.

iK

24

GORDON: Thus, the two examples I have given illustrate rather well how
(cont.) these concepts can be applied in a large number of ways. In the first

system (Figure 2), the transaction was a message; in this second

system, the transactions are human beings. You can also see how

general the concept of equipment is. With a little ingenuity, this

basic language can be applied to a wide variety of systems.

I do not want to give you the impression that this language can

only be applied to small-scale problems. I just used for examples

problems that had only ten to twenty boxes. Actually, we have built

simulations which have had as many as two thousand boxes. We have

not built larger programs as I feel that when you reach that size in a

simulation program, then you must stop and do some proving in your

system. Too many people tend to represent all the little details in

the system and finish with a structure that has great detail in some

parts and only gross tones in other parts. Our program is one that

gives you the ability to expand and contract very easily and I believe

that it should be used in that way. By the time you reach two thousand

blocks, it is time to consider whether or not you have too much detail.

BURROWS: I would like to ask two related questions. First of all, it ap-

peared that as you were taking the four types of shoppers (trans-

actions) through the system shown in Figure 5, you could give the

percentage of the load represented by each type of shopper. At some

point in the program it may turn out that the path of servicing followed

by the separate types may split, later come back together, and then

split again later. If you randomly make the decision at the first split,

as to which type of shopper a particular shopper is, you won't have

the same load between the two areas in the time period after the sec-

ond split if you again randomly make the decision. Do you make any

provision for remembering the first decision in order to keep a con-

sistent treatment of the load through the whole system?

t.

25

GORDON: This is handled by block types which tag particular transactions.

It's quite easy to arrange the specific job of one of the block tyqes to

tag the transactions so that in a later block type you can identify which

path was previously followed. This is quite similar to a "TSX' instruc-

tion. The transaction can carry a note which says "I went by way of

route one." I only mentioned two mechanisms for deciding which way

you should go; one was random choice and the other was alternative

selection. The third mechanism for determining the route to follow is

presetting a previous node which could have notated the transaction.

BURROWS: You've answered my second question which was: "What descrip-

tion of a transaction is allowed at the beginning and can you erase these

descriptions ?" These descriptions essentially determine which side of

the gate the transaction goes through. Can you erase these descriptions

and add other tags as a transaction goes through the system?

GORDON: You can put a tag on the transaction which says: "The next time

you are asked, 'Which way shall I go?', look at this note and it will

tell you." Once that action is performed the tag is set to zero and is

ready to be reset to another value. When a transaction is tagged at a

particular box, the tag can be considered as the mechanism for choosing

a successor. The tag is erased as the action of the tag is performed.

If you want to preserve the tag, you must reassign it; if you don't want

to preserve the tag, it's ready to be used for the next decision.

BURROWS: So the description of the tag is essentially comprised of one bit.

Since you only have two-way nodes, does the tag simply decide whether

to go one way or another, or is it deeper than that?

GORDON: Actually the tag is an absolute address. The box which makes

this decision uses the tag established for the transaction as the actual

address to which the transaction is to go. f

I.i

26

GORDON: In other words, if one must tag a transaction when the decision

(cont.) is made, it is simplest to tag the transaction with the number of the

node or block to which it will eventually go. This could be done, as

you have suggested, by arranging a single bit to say, "Go this way"

or "Go that way."

BURROWS: In an intricate processing system the number of descriptors or

adjectives that describe each transaction is quite large. Future proc-

essing depends upon this description and, indeed, some decisions

made during this processing will change later on, if it is delayed too

long in one place.

GORDON: Although I've only mentioned one descriptor, other descriptors

can be attached to a transaction. Any of the properties that I've been

discussing can be made functions of these descriptors. For example,

you can attach a descriptor to a transaction such that the time of that

particular box is a function of the descriptor.

When you include descriptors though, the program gets more

complicated. Our type of program is quite straightforward if you

keep within this partial flow type of simulation where the transactions

do not have individual identity.

BURROWS: Is it fair to say that the aspects of the system you study are the

effects of the cascaded waiting lines, the number of servers and the

priority schemes?

GORDON: Yes. I would say that the best single item we get in the systems

we have studied is the delay time. What we want to measure is the

percentage of messages that are handled in a given time so that we can

derive a particular distribution. With this we can determine the

probability of being delayed more than a certain amount of time.

4

27

BURROWS: It's not qualitative in terms of the adequacy of the service

except in terms of delay time.

GORDON: Well, there is some relationship between adequacy of service

and delay time. If you can decrease the delay time then you can

improve the service.

Of course a second factor is the information regarding the

utilization of the equipment. It becomes quite obvious whether or

not you have provided enough lines or enough computing capacity

or enough storage.

MOLNAR: In many instances, critical decisions cannot be represented by

choice points because the conditions keep changing and a man must

determine whether or not a decision has to be made. Besides, he

must diagnose what alternatives are available prior to the

choice point.

GORDON: It is possible to describe two systems. One is the operating

system and one is the decision system, both of which interlock. As

a simple example of this idea we can look at a common problem in

communication work. A number of terminals share one line and only

one terminal at a time can use the line; a mechanism can be estab-

lished for transferring control from one terminal to another.

Figure 6(a) describes a technique that can be used for repre-

senting a system like this. We have a series of originate blocks,

each of which represents a terminal where messages are created.

We send each of the separate messages into a hold block and if a

message gets through the hold block, it is then equivalent to saying,

"The message is on the line. " Once on the line it goes wherever you

desire it to go (e. g. , a computer).

28

) TERMINALS

1~ H ~ IOLD ITEMS OF
EQUIPMENT

BUFFER TO EQUIPMENT

----------------------------------- J

Figure 6. Simple Communications NetworkF

I.

29

GORDON: Now we build another network shown in Figure 6(b) in which we
(cont.) indicate the items of equipment. Assume that they all have a capacity

of one; i. e., only one transaction can be handled at a time, and there

is a closed loop in which you release equipment "No. 1," and then

reseize it after a pause. You then release equipment "No. 2" and

reseize it after a pause, and so on. The loop can be initialized so

that when the transaction has been injected into the loop, it has

already seized "No. 1, " "No. 2," "No. 3, " "No. 4, " etc. Thus, this

one single transaction has control of all the equipment. Because the

transaction has control of all the equipment, it blocks transactions in

Figure 6(a). When the control transaction begins a loop, it releases

"No. 1" which opens the line in Figure 6(b) to transactions to line 1.

After a pause, the control transaction shuts the line off. Then it

opens up "No. 2" and shuts it off; opens up "No. 3" and shuts it off,

etc. So this single transaction is following some type of decision

process which can get as complicated as you wish. The conditions

under which you open or shut these paths in Figure 6(a) can vary;

e. g., it might simply be a clock pulse sending the control transaction

around, or it might be a very elaborate decision procedure by which

it is decided whether or not "No. 1," or "No. 2," or "No. 3," etc. is

opened. It is feasible, then, to build up fairly elaborate decision

procedures inside the program by techniques of this type.

The concept of an item of equipment is used here to provide con-

trol that interlocks two different systems; viz. , the operating system

and the decision system.

ADAMS: We may be using the term "decision" when we actually mean

"selection." The methods that we have been discussing so far are valid

for those classes of decisions that are only selections of alternatives.

i.

I;

30

GORDON: With these programs, though, you can get a high level of deci-

sion making. In Figure 6(b) the decision can be determined by the

traffic currently going through the system or that has gone through

the system. If the traffic is exceptionally high on "No. 3" and is

exceptionally light on "No. 1" (given a definition of "high" and "light"),

then within specified bounds "No. 1" is shut down and the time origi-

nally allotted to "No. 1" in the control loop is given to "No. 3."

In Figure 6(a) the systems could be a continental link system with

Station No. 1 in San Francisco working eight hours a day and Station

No. 4 in New York working a different eight-hour period. One condi-

tion could be that, if the time of day is in a certain period, the con-

trol transaction skips Station No. 1 and goes to Station No. 3. In other

words, No. 1 is left permanently shut off for a particular time period.

How do you know what time of day it is? Well, you have another

system representing a transaction ticking around. If, in the closed

loop shown in Figure 7, each one of the boxes represents a time dura-

tion of one hour, then, after one hour, the timing transaction will

move into a new block. Timing control can be exercised by the tech-

nique of equipment. When the timing transaction has gone through a

block after one hour, an item of equipment could be seized by the

timing transaction. This can place a block in front of the control

transaction and force it to choose an alternative path. In other words,

the conditions under which the control transaction proceeds are that:

If the timing transaction is in one part of the loop, then the time of

day is a certain figure, and one route is chosen; otherwise, an alter-

native route is taken. In this manner you can have many levels of

decision making. However, it does become awkward, since you can

no longer see exactly what each of these networks represents.

31

T AT -1 HOUR

Figure 7. Time Control Loop

33

II

A FUNCTIONAL MODEL AND ITS UTILIZATION I'
IN THE DESIGN OF A COMPLEX SYSTEM I.

Irving A. Wallach

System Development Corporation, Paramus, New Jersey

Due to a change in Department of Defense requirements, we were unable to obtain

a clearance for public dissemination of this paper. It will be released and published as a

Supplement to this Report at a later date.

i

35

III

GENERALIZED MODELING OF COMPLEX SYSTEMS*

Harold W. Adams

The MITRE Corporation, Bedford, Massachusetts

The concern of this paper is the attempt to develop a generalized model of com-

plex decision systems; in particular, the Air Force command and control systems.

Some of the general concepts and the approach we have taken to this problem are

discussed, as well as some details of a tentative system model.

The job of the Air Force in a command-control system appears to be the

management of the force. The decision problem is thus a resource management

problem: Where are you going to put your resources so that they will do you the most

good in terms of what you want?

It seems to me that one of the main differences between the military and the

industrial situation in many of these management systems is that, in general, the

industrial system is set up to operate on some sort of presumed stable, steady state,

whereas, in general, the military systems are set up to operate under crisis condi-

tions of one sort or another. Exactly what this differentiation means in practical

terms, I don't know. I do feel the point is one worth some study and clarification, in

view of the success some have reported in developing generalized models of a business.

Another point that we should concern ourselves with is the matter of what makes

a system complex. The closest I can come to it, and I am not at all happy with this

as a definition, is that a complex system is one that does more than one thing. By

more than one thing I mean that it may at one time, in one state, do a certain

*This study has been previously reported in a document by H. W. Adams,

C. M. Festa and J. G. Robertson entitled, "The Functions of a Decision System,'
MITRE Working Paper W-3856, April 7, 1960.

36

thing and may at another time, in another state, do a different thing. * There can, of

course, be all sorts of combinations of such system functions.

First, let me indicate the large degree of similarity between the approach that

Geoffrey Gordon has taken and the approach that we have taken, The similarity is

not coincidence. We are quite frankly trying to apply his technique to our problems

with complex systems. To give an idea of our goal, let me quote from a paper of

August 1960 written by Gordon and three others.

Often problems arise in late stages of system development which
could have been avoided by better decisions at the beginning. At the out-

set, the designer cannot recognize the implications of his choices because
of his limited knowledge at the time the decisions have to be made. If the
vicious circle is ever to be broken, a method for studying the performarce

of rough "paper designs" is needed. **

This is approximately what we are trying to do here at MITRE. The authors of

the paper indicate that "micro-simulation, " the simulation of the detail of the sys-

tem, is impossible early in the system design process because we know only the

broad outlines of what the system is to be. One could not, at this point, specify

detail if he wanted to, except in rather exceptional cases where he just happens to

know certain details. Since the system is known only broadly, it may therefore be

less complex to simulate at this stage. That is, we may be able to simplify our

model without loss of real validity.

The paper then describes the work they have done in generalized simulation

modeling. In his paper, Geoff (Gordon) has told you of this approach. We

*See also the discussion in Newell and Simon, "The Logic Theory Machine:

A Complex Information Processing System," The RAND Corporation, D-868

July 12, 1956 (p. 2).

**D. L. Dietmeyer, G. Gordon, J. P. Runyon, and B. A. Tague, "An Inter-

pretive Simulation Program for Estimating Occupancy and Delay in Traffic-Handling

Systems which are Incompletely Detailed," AIEE Conference Paper 60-1090,

Pacific General Meeting, August 8-12, 1960 (p. 1).

37

are trying to see how far we can get using an approach like Geoff's and applying

it to a problem like the one that was outlined by Irv (Wallach).

Hopefully, the model we are developing can be used for rapid and reasonably

precise representations of system design alternatives which could then be subjected

to simulation analysis. The analyses thereby derived could be applied to the recur-

ring MITRE problem of evaluating alternative system design proposals, both those

of contractors and of in-house personnel.

Our approach to the system is characterized by concentration on system func-

tions. Here again, we have followed the lead of Geoff Gordon by concentrating on the

action verbs which specify the system functions. A major virtue of this approach is

that it avoids concern with system equipment at the stage when such concern is both

inappropriate and often harmful.

The most abstract representation of our decision system model is shown in

Figure 1. A closed loop exists in which your system and the real world have an

ongoing process of interaction. The process starts with a real world which you de-

sire to have some particular structure; you want it to have a structure favorable to

you. Your sensors tell you how things are in the real world. After you clean up the

sensor input data through data quality control, you make some sort of assessment of

the situation: Is the world as you would like it to be? If it is not, some decision must

be made about the action or lack of action you wish to take, so as to restructure the

real world more along the lines you would like to have it. Thus, the process cycles;

a decision is made, an action is taken, presumably the real world in some way is

changed, the sensors and further assessment then tell you whether or not the change

is as you want it. We have a continuously cycling closed loop.

The next problem is to develop a more concrete model. From a theoretical

point of view we are convinced that the problem must be approached deductively, with

inductive checks as we proceed. The next step is, therefore, to model the internal

structure (the logical and sequential flow of functions) of the two fundamental "sys-

tem action verbs, " ASSESS and DECIDE. (The data quality control function in which

F

38

INPUT DATA

SENSORS

REFERENCE
DATA

DATA QUALITY
CONTROL

S

DATA T
QUALITY

CRITERIA 0

R REAL

WORLD

DATA A ASSESSMENT
CONTENT G
CRITERIA

E

PLANS D~~O

AC11ION

Figure 1. Generalized Decision System Model

39

the input data is cleaned up has been excluded from consideration not for reasons

of unimportance, but rather because it is not a prime functional operation for our

purposes.) The reasonable way to do more detailed modeling seems to be to describe

each of the major functional verbs by the lesser verbs which indicate the sub-

processes which make up the whole. If we proceed along this path to successively

higher levels of specificity, we should soon arrive at the point where a computer

program can be written which will simulate the function represented when suitable

constants and parameters are inserted.

One approach to the ASSESS subprocess is that shown in Figure 2(a). The

ASSESS function asks the question; "What is going on?" and is seen to be composed

of the three subfunctions: monitor-monitoring what is going on based on sensor

inputs; compare-comparing what you found about the world with the picture you have

in storage of what you desire the world to be; evaluate-evaluating whether there are

differences between the real and desired worlds and, if there are differences,

whether these are significant to you, and, if they are significant to you, whether

you wish to take action. If so, you must then DECIDE what you want to do to

minimize the difference between the picture of the world as it is and the picture of

the world as you would like to have it. *

The abstraction level is still too high. Figure 2(b) takes one part of the

ASSESS function, monitor, down another abstraction level. The subfunctions of

monitor are seen to be, in order; scan, select, categorize, correlate. At this

level we find we can already indicate the points at which information flow elements

have to be brought in, we can specify some of the decision loops, and we find that

binary choice points begin to appear.

*The process outlined here is conceptually similar to that of Newell, Shaw

and Simon's work on general problem-solving programs. A. Newell, J. C. Shaw,

H. A. Simon. "Report on a General Problem-Solving Program, " The RAND

Corporation. P-1584. Dec. 30. 1958. Rev.. Feb. 9.. 1959.

40

ASSESS

MO N ITO R

COMPARE

EVALUATE

DECIDE

(a)

INPUT DATA

Figre . Fnctona FlwSAgrm SESFnto

STORED DAT

41

We have tried to indicate that select can be analyzed into the four questions

indicated in Figure 2(c). Again we have decision loops and binary choice points,

We also have reached the point where the binary questions we are asking are nearly

real-world-specific in their content.

On completion of the ASSESS function, we have found that either the real

world is as we want it to be, in which case no response is required on our part; or

the real world is not as we want it to be, in which case a response from us is re-

quired to redress matters and achieve our goal. The DECIDE function is concerned

with selecting from the universe of possible responses that one which seems

most likely to achieve our goal.

When we enter the DECIDE function, we know where we are, we know we don't

like where we are, and we know where we would like to be. Our problem is to deter-

mine how to get to where we want to be. We have taken a rather straightforward

game theory approach to this problem. We assume first that we have a multipurpose

system. We then model the DECIDE function in the manner indicated by the func-

tional flow diagram shown in Figure 3. *

Initially we must compare the problem and the goal with the response classes

stored in our machine. We assume that there are 1 through n response classes

stored in the machine from which a selection could be made.

By select pplicable response classes we conceive response classes as a

selection of some "punishment suited to the crime." For example, if the situation

is that the Soviets are sending troops to the Congo, somehow you feel this is not

necessarily the occasion for firing the Minuteman missile. The more applicable

response class would seem to be, "Send American troops to the Congo. "

*The sequence diagram structure draws heavily on an analysis developed
by Dr. Joseph G. Robertson, Jr., of MITRE.

42

ASSESS ' REFERENCE DATA S
-STATEMENT OF PROBLEM\ DATA QUALITY

DEVIATION I CRITERIA R
\ GOAL / DATA CONTEN4T A

DECIDE __ ,CRITERIA G

PLANS E]

SELECT APPLICABLE
RESPONSE CLASS (ES)

DETERMINE FEASIBLE Y N

AE CRITERIA

COMPUTE EXPECTED
VALUE

i i.-

ORDER OPTION
PREFERENCES

COMMAND

DETERM I NATION

RJET ACCEPTL

yIMPLEMENT?

RECOMMEND

~DECIDE

ACCEPT IREJECT

ACT

Figure 3. Functional Flow Diagram of DECIDE Function

43

If none of the response classes seem appropriate to the situation, then you go

into plan generation. This box, as far as we've been able to take it, is unstructured;

we simply do not know the internals of this function. We would probably suggest that

plan generation is a function best left to people in the command staff somewhere off-

line of the machine. This manual plan generation subfunction will, as we view it,

produce both a response class and the feasible options within this response class.

Once we have found response classes which are applicable, we must then de-

termine the options within these classes which are feasible for us to pursue in the

light of our resources. If we find that one or more of the options within the classes

are feasible, we must.then compute the expected value of each option. If there are

no feasible options, a determination must be made of whether we are able to relax

the resource criteria (have we been authorized by our commander to do so?), or

whether, criteria relaxation being impossible, we must generate a new plan.

If it is within the authority of the system at this point to relax the criteria, you

go along the "Yes" route and take another look at feasible options to see if some-

thing is now feasible in view of your new criteria. If you cannot adjust your criteria

and you have found that none of the feasible options will satisfy the goal, you then go

back to plan generation.

Given a set of feasible options, the expected value of each of the options in

terms of your goal is computed by the rather standard game-theory approach indi-

cated in Figure 4. This is basically a cost/value tradeoff. The result here will be

a series of option value statements (e. g. , "Will this option achieve our goal and then

some?" perhaps indicating it requires an excess of resources for the task; "Will

that option barely achieve the goal ?" perhaps indicating the risk of not achieving the

goal should implementation be imperfect in any respect).

Given these option value statements and comparing them with stored

criteria, we can order the options according to preference criteria indicated

by the commander. We are then able to present to the commander for his

{

44

COMPUTE EXPECTED VALUE STORAGE

L
PREDICT POSSIBLE OUTCOME

FOR EACH OPTION

ELIMINATE NON-REALISTIC
OPTIONS

EXTRAPOLATE TO DETERMINE PROBABILITY OF
SUCCESS OF EACH REMAINING OPTION

DETERMINE VALUE
OF OUTCOMES

DETERMINE EXPECTED
VALUE OF EACH OUTCOME

ORER OPTION PRERNCSI

Figure 4. Specific Breakout of Compute Function within DECIDE

iI
45

determination, the preferred options which appear appropriate with a preference

ranking of these options.

The commander must then determine either to reject all options, or to select

an option he feels should be implemented. If he rejects all, he will indicate how

option-assessing criteria should be adjusted so that the decision process preceding

his determination will function more in line with his view of the situation. This

done, criteria are adjusted and feasible options are selected on the basis of the

commander's restructuring.

If the commander selects an option he feels should be implemented, the

question becomes: Can he implement this option within the constraints imposed on

him by higher command? If he can, he does, by issuing action directives. If he

cannot, he recommends his preferred option to his superior. If the superior com-

mander accepts the recommendation, action directives are issued. If he rejects the

recommendation, he indicates the basis for the rejection; that is, more clearly

specifies his preference criteria. The problem then goes back down an echelon for

subordinate command determination of whether to select another option from those

previously presented in rank order or whether to reject all these options and recycle.

Here again, the only conceivable reason that you would recycle is if you are

able to adjust some of your criteria in the sense of relaxing them or of changing

them in a way which would open up alternatives not previously feasible.

Now, at a certain level of concreteness, a system model or a functional building

block becomes meaningful in terms of the constants, parameters, and other factors

which affect the operation of the system. If you can take these functions down to some

at present undetermined level, you somehow feel that you have reached the real world.

The problem once more is: At what level of concreteness do we know the facts

about the system? This gets back to the original point I tried to make with the quote

from Geoff's (Gordon) paper. In the early design stages, when a model such as this

might be most useful, you really don't know much concrete about the system. This,

it

i,

46

in a way, simplifies your modeling problem because you cannot go very far into the

detail. It seems to me that if you can't go into much detail, then some of the argu-

ments against abstract modeling are undercut-undercut because you have no choice

except either to try your system design in some sort of a model or to leave it to the

best judgment, intuition, experience, whatever you want to call it, of the people

suggesting the design.

Now it may well be that this judgment is superior to a simulation model. In

fact, if you had the right people there, I dare say it would be. However, I suggest

that from a very practical point of view, a model like this can, given the frailties

of people, be very useful in two senses; first, it can help build up the understanding

of the people who are concerned with the effect of the design decision, and therefore,

the confidence they have in the conclusions they may have reached in other ways.

The second point is one that William Haythorn of The RAND Corporation Logistics

Laboratory has often made. Bill, as you may know, has run a series of simulations

on base maintenance of missile squadrons. He has found that one of the beauties of

simulation is that, if you simulate something and come to a conclusion, the fact and

the paraphrenalia of simulation tend to heighten in.your buyer's mind, in your boss's

mind, or in the Air Force's mind, their credence in the conclusions you have

reached. It becomes easier for them to believe that your decision is the right

decision if you say that you've put this through a thorough simulation. It is scientific

in approach and has cost a lot of money; therefore, "it must be correct. " In any

event, I think that in the give-and-take of the political world that exists, this type of

credence level for a customer may be a valuable side benefit.

It is also worthwhile to point out a potential defect in computer simulation anal-

ysis and decision. Some of you may have been following the MIT Centennial Lec-

ture Series on "Management and the Computer of the Future." Norbert Weiner,

speaking of his fears about computers and their future use, made this point:* He

*Symposium on Scientists on Decision Making, May 5, 1961, MIT,

Cambridge, Mass.

,

47

fears that, excepting a few rather strong personalities, a tendency may develop for

the computer to take decisions out of the hands of the people responsible for making

decisions. Those charged with making final decisions may someday think it's simply

enough to say that the computer says thus and so, therefore this should be done, and

further, that the computer can be responsible for any mistakes which may result.

This would essentially erode the base of any responsibility the people may have felt.

Weiner underlined this point by making the analogy that to use computers to

make decisions is a sort of "Russian roulette for managers." As he sees it, Russian

roulette is, psychologically, simply a game which may enable you to do something

you want to do without taking any responsibility for what's been done. If you happen,

in the process of the game, to kill somebody, that's not your fault, it was just the

result of a random process which discharged the bullet.

Now, to return to the beneficial side of simulation models in system design,

let me repeat a point made by Irv (Wallach): the model imposes an overall logic

upon the system. If the model hangs together, and if, when you turn the crank of the

machine, a simulation runs through properly, you feel that you have an integrated

and self-consistent system. The really important step in system design is thus to

specify the system functions into manageable packages within the overall structure

of coherence given you by your model. To put it into simpler terms, if we have

isolated the functions of a system, it is necessary, then, to define the tasks that

must go on within these functions so that the functions will be fulfilled. It is this

level to which one should attempt to go in the development of a general model.

That is roughly where we got, on our first approach to the general system

model. At this point I feel it appropriate to read the caveat we inserted at the

end of our discussion of our model.

Finally, let us inject a note of realism. Others who have pursued
the general system simulation model have had to accept a compromise to
the original ideal of a single model. Very simply, a single model either

had to have an excessive number of parts which would lie unused in any
particular simulation application, or else the single model had

48

insufficient generality to cover the various facets of the real world en-

countered in the many systems to which the model was to be applied.
The obvious answer, therefore, is to develop a library of basic system
building blocks-each with its own program, each covering a function

found in many (though perhaps not all) systems-from which specific

system simulation models can be put together rapidly as required. *

With this first attempt at a general simulation model for command and control

decision systems, it became fairly obvious that very little more was to be gained by

sitting back in our ivory towers and analyzing a pure and logical world. We felt we

needed to try out our model in a particular system and see how much overlap there

was between our logical diagrams and the real world. The problem chosen was the

transport problem in the USAF Command Post. We chose the transport problem

because we could think of no problem which was better worked out as far as the

techniques were concerned, and about which more was known, or for which more

samples of previous solutions were available. A more immediate reason for

choosing this problem was that Peter Ten Eyck and Charles Morrill, both in our

department, had already made a model which simulated the transport problem. The

diagrams shown in Appendix A indicate the degree of overlap we have found between

the transport model and the general model I have discussed here. Let me empha-

size that none of this has been put on a machine. It all occurs in the real world

only in the form of these diagrams and we have not reduced the diagrams to a

computer program.

In the following paper, C. S. Morrill and P. H. Ten Eyck discuss the specific

case we used and the degree of overlap found between the transport problem and

our general system model.

*H. W. Adams, C. M, Festa, J. G. Robertson, "The Functions of a

Decision System," MITRE W-3856, April 7, 1961 (p. 4).

I
49

IV

CASE STUDY: SIMULATION OF A LOGISTICS PROBLEM

Charles S. Morrill and Peter H. Ten Eyck

The MITRE Corporation, Bedford, Massachusetts

Before delving into the application of the general model to a specific case, I

would first like to present the specific case that was used. In our own study, the

basic problem to be simulated was the logistics problem confronting the operations

center of an Air Force command and control system. Essentially, the problem is

to determine in considerable detail one or more feasible ways of handling a request

for MATS transport of goods from one region to another. In the request, a priority

level and a time limit for processing the request are specified; and within the prob-

lem several sources, cargoes, and types of transport aircraft may be involved.

The sequential steps in handling this problem are depicted in the flow diagram

in Figure 1 and are described in detail in Appendix B.

This problem resolves, essentially, into three parts, which are represented

as sources, destinations, and routing.

Sources refer to the selection of airbases from which aircraft are to be

obtained and to the quantities to be drawn from each airbase. It includes the ques-

tions of whether the soliciting force is to have its entire request filled, and if not,

what proportion of the request is to be filled.

Destinations involve the specification of the bases which are to receive the air-

craft, and the quantities which are to be sent to each base. In some cases these may

be specified by other headquarters. However, if only part of the request complement

is to be moved, this reallocation must be directed by the command center.

Routing embodies, with some embellishments, the classical transportation

problem of operations research. The problem is to answer a question like the

50

following: Given a set of sources, each with some aircraft, a set of destinations,

each requiring some aircraft, and a cost (in money, time, or losses, for example)

specified for each source-to.-destination movement of a single aircraft, what is

the least expensive way to send the aircraft?

Some of the assumptions made for this problem are as follows, with the

complete list given in Appendix B:

(a) all data received at the operations center are completely reliable;

(b) a source has both aircraft and cargo on hand;

(c) no aircraft will fly without some cargo, and the amount of cargo will

remain constant throughout the trip; and

(d) problems of ground transport of cargo or variations due to reloading

of cargo from one aircraft to another are not considered.

In this problem, the operations center receives requests from a Requesting

Agency (RA), which is always at a higher level of command, and is considered to

possess less detailed information than the operations center. Thus, jobs may

appear feasible at the agency, but may not, in fact, be feasible.

There are many possible modifications of the sample problem which would do

no violence to the logistics model, but would simply alter the solutions. A library

of programs would be needed for any extensive simulation program and could be

easily generated by varying some of the elements of the problem. Essentially,

there are five elements in the request; viz., priority, destination(s), operational

requirements and quantity of cargo, aircraft information, and time.

I intend, here, only to indicate the manner in which the problem is handled

and how the flow chart in Figure 1 depicts this. The first question asked after the

request is received is: "Is the job feasible?" At this step (2) there is an expe-

rienced operator who is asked if, according to his knowledge, this request can be

fulfilled without going through all the mechanics of the solution. If he is certain that

the request cannot be fulfilled, he sends it back to the requesting agency with the

51

z~

z o~

2 00,

ld 0 z

o wE2 0

022-

40.1~0~c, 1-

0 040 0

0 .
oO 2

6 2

-w 0

z z400

00

0 1-

0 0

U0.4

400S6
OIZJ-6 1--0.4

1 ~ ~ 'o 0 0 x 0
)~w~-o w -

0 0
4o

W61
o- w ~w

00 0 9~ 0P~ 0
E1 Q6 gm Oo0W

40 > 1
go!idoo 0

t2 I
4

0

0.., 0

0

0.D

Zc G) wz w g~j00

I-

04)~ 40 24

0 -Z0.
00o E21 4 o .

44 ~ 0 0.- 0.
I

0 >G

52

stipulation of why. Everytime it is necessary to return to the RA during the solu-

tion of the request, the RA is told what the problem was, so that it can issue a

more reasonable request or modify the original constraints of the request. If the

experienced operator feels the request can possibly be fulfilled, or a more reason-

able request has been issued, the process continues through the remaining steps

indicated in the diagram until the problem is solved, or it is necessary to return

to the RA. We ask about cargo and what cargoes will fulfill the request, and we

ask about what type of aircraft can carry the cargo. At step 7, we ask whether or

not all the specified destinations can receive the given type of aircraft. In our par-

ticular example, we found that destination 9 could not receive any of the given type

of aircraft. Thus, the requesting agency had to modify the original request by omit-

ting D9 and giving D 8 and D10 the cargo originally scheduled for D . In this

manner, we go through each of the successive steps to the final solution.

Now, the generalized information flow model developed by Adams and 'Festa

was based upon the idea that many systems have similar information flow require-

ments. Although the content of the data varies widely from system to system, the

tasks involving the use of that data frequently recur both within a system and among

systems.

As Hal has already mentioned, a point came, in the development of the general

model, when it was necessary to examine closely the degree of fit between the

model and some particular system task which was complete in itself (i. e. , from

initial data input to terminal decisions). As a result, our proposed simulation study

of the logistics problem was selected for this examination. It satisfied the basic

criterion mentioned above, and, furthermore, it was broken down into fairly

small parts for analysis.

A basic conception in the development of the general model was that of the

system verb, which, in each case, represented a particular type of action required

of the system. The verbs were developed in a hierarchy of generality; thus, for

example, in Appendix A, "list" sometimes appeared as a subheading under

53

"determine," which in turn was a part of "identify," while this latter was one as-

pect of the major function "assess.

The detailed comparison of the general model with the logistics model clearly

illustrated two points. First, there was a considerable overlap between the two,

especially at the more abstract level. Second, the, attempt to conceive the particular

parts of the logistics problem in terms of specific system verbs showed that many of

these verbs recurred frequently, and that the conception of the problem in these

terms led to a clearer, more easily programmed, breakdown of the problem parts,

revealing, in fact, several places at which revision of the original problem flow

diagram was required.

The flow diagram in Appendix A, entitled Generalized Information Flow

Model: Transport Problem, illustrates the first point effectively. The numbers to

the left of the chart refer to the step numbers of Figure 1 that are covered by the

several system verbs. The shaded boxes indicate those system verbs that overlap

the functions performed in the logistics problem of Figure 1; i. e., these areas of

the general model that are in accord with the steps in the logistics problem.

Although the general model and the logistics model were independently con-

ceived, the various parts of the latter can all be reasonably subsumed under the

major system verbs, "data control, " "assess," "decide," and "act. " Not only chis,

but every one of the second-level verbs used under "assess" and "decide" (which

are the core of the general model) occurs in some part of the specific logistics

flow diagram. For example, "identify," the first of the second-level verbs under

"assess," in the general model, includes the selection of cargo types and transport

aircraft types appropriate.for complying with the request. "Compare" involves the

collection of relevant data on resource availability and destination capability. To

"evaluate" is to use the data to ascertain if the request can be handled within

the constraints of the situation. The major headings under "decide" are similarly

represented, though in less detail, in the logistics flow diagram.

54

In addition, more than fifty lower-level verbs occur within the detailed flow

diagram shown in Appendix A. These are, however, derived, with repetitions,

from only twenty-three different verbs, with some of these essentially synonyms.

Of even more importance, the breakdown of the logistics model into specific

system verbs permitted a detailed specification of the precise acts required, and

showed clearly several discrepancies in the original logistics model. For example,

the original showed the operator asking if changes in weather or intelligence data

might make a solution possible at a time when the operator would often possess no

data concerning weather or intelligence. The model was easily modified accordingly.

A second instance of the operator's having insufficient information to ascertain the

possibility of a solution was similarly handled by a simple change in the sequence of

the diagram boxes. Finally, the original logistics model required a redundant

assessment of solution possibility; this was simply deleted.

All of these errors could have been detected by a careful analysis of the logis-

tics flow diagram. The point is simply that the logical discipline of the general

model made the process of detecting these errors faster and easier, and may be

expected to bear similar benefits in application to other systems or subsystems.

This model, as applied to the specific problem, thus reveals itself as a useful

tool in the analysis of particular systems, and one whose power will be augmented by

increasing use.

4

i ~

APPENDIX A

GENERALIZED INFORMATION FLOW MODEL: TRANSPORT PROBLEM

The following set of flow diagrams represents our first attempt to apply the

concepts of the generalized decision-making model to a specific case; viz., the trans-

port problem. Though limited in the degree of interaction between variables, it

demonstrates the feasibility of the concept involved.

In this set of diagrams the extreme left-hand margin depicts the most abstract

representation of functions performed in the system. The level of abstraction de-

creases from left to right until you reach the point where the flow diagram can be

translated into a computer program (a point not reached in these diagrams).

The black-outlined boxes represent those functions that are contained in both

the general model and in the transport problem, i. e., the functional areas of overlap

between the general and the specific.

The numbers in parenthesis () along the left-hand margin refer to the numbered

boxes in the logistics flow diagram (Figure 1 in Section IV). These are given to

indicate the transformation from the original logistics flow diagram to the framework

of the general model.

Within each box the initial verb is underlined to emphasize our contention that

functions performed in systems can be described by a series of action verbs common

to several systems rather than only one system.

A-1

GENERALIZED INFORMATION FLOW MODEL:
TRANSPORT PROBLEM

FILTER

E LE A.T'S ESS-V
ISMS AGE

_R HM TABLMO E

COMPARE

(8)ARACTERISTICSOCRAPPICAL

'l-cETABL TO ECH D

(7) C ACH(O
A- ~EA T ES N l

COPTEO AALAII

DTHIN LIeEIGO & ADJUS

ELIMINAT INH NON
LOi

MOIF TIETBE

([N) INVES~aTGABE EFETOF. N

DTERMPOICNE IMONTELIEC 0

Cia- A AC

5 LLITION STILL POSSIBLE
SO

N MODIFY MAP 2
ABLES 4,5 OR
FORM MAP 5,
TABLES 6,7

UPDATF- DATA FOR SISOI D
(17) INCLUDE WEATHE*R

_F .. IFY MAP . TABLES
LOR FO MAT MAP 4, TAI LEL.9j

IS SOLUTION STLL
POSSIBLE PI

y N

DECIDE WILL A CHANGE IN WEATHER
(19) AND/OR INTELLIGENCE

PERMIT SOLUTION?

y N

DETERMINE FEASIBLE ADJUST

OPTIONS CRITERIA

GENERATE
Luo-P

RA

ICOMPUTE
EXPECTED

COST/ VALU

r-ESTABLISH COST/VALUEJ

I _ MATRIX

ORDER 0 PTION
PREFER NCES

(20) SELECT BEST

r 5 SOLUTIONS

CAN F - R N E DATAWEAT N L.C Cr(21) ON ER/I TWE EN

A-5

DETERMINE EFFECT
ON SOLUTION

(22)ISSLTOSTL

(23) IMPLEMENT SOLUTION?

LOOP

(24) I NITIATE F LIIHTO

y N

ACT

(OIO ACTIONTIN A

A-

GE NERAE1,00E

(12) O XEDN

(IS) ~ O INREIN EFIORIT

REPEALTIM STABPE9

RECORD RESULTS
(ID) IN MATRIX V

(13 JCHA N E E E TOT E

THANCBYATINE/PRIORITY]

STAT :

RECO7 [EUT

tI

APPENDIX B

A DETAILED SAMPLE PROBLEM*

"Request 1. from the Requesting Agency, arriving at 0300Z 1 March 1961,

Send 100 X-kiloton 1500-mile IRBMs to 10 specified destinations. Start at

0000Z 8 March 1961. End by 0000Z 11 March 1961. Priority level is 4.

D 1 to get 10 D6 to get 5
2 to get 10 D7 to get 15

D 3 to get 5 D8 to get 15

D4 to get 10 D9 to get 5

D5 to get 5 D10 to get 20."

In this request, the exact cargo is unspecified. Any missiles that fit the opera-

tional requirements can be used.

The cargo movement is not to begin for a week. This implies that there is

time available for planning the job. The job itself must, however, be completed

within 72 hours of its onset.

For priority level, a scale from 1 to 5 is tentatively assumed, such that

level 1 is assigned to all resources (aircraft, cargo, fuel, facilities, personnel,

etc.) that are for use in general war, while level 5 is assigned to resources that

can be used on comparatively unessential jobs. To assign priority level 4 to this

job, is to tell the CP that all resources earmarked for level 4 or 5 may be drawn

upon to implement the task.

*To preserve generality throughout this problem, the codes C., A., Di, SO i

are used instead of specific names to represent, respectively, the ith cargo,
aircraft type, source base, destination base and stopover base.

B-1

The first question asked by the CP is, "Is this request feasible?" In this

problem, the first answer given RA to this question is, "No. We know that during

8 and 9 March 1961 other tasks with higher priority will be occupying most of the

available transport aircraft. Suggest that this task be done from OOOOZ 10 March

1961 to OOOOZ 13 March 1961." This step is essentially a human filtering process; a

commander whose familiarity with the operation permits him to make this judgement.

For example, the RA sends a reply arriving at 0700Z 1 March 1961, as follows:

"Request 2. In Request 1:

(1) Delete phrase 'Start at OOOOZ 8 March 1961.
End by OOOOZ 11 March 1961.'

(2) Insert in place phrase 'Start at 0000Z
10 March 1961. End by OOOOZ 13 March 1961.

(3) Follow revised Request 1."

The CP, upon receiving Request 2, again asks Step 2, "Is this request fea-

sible?" This time, the answer is, "Yes. " Step 3 is, "Is cargo specified in the

request?" The answer, "No, " initiates Step 4, "What cargoes meet the operational

requirements specified in the request?" To answer, the CP checks files of missile

characteristics, and finds that it must tell RA, "None. There are, however, X-kilo-

ton 1000-mile IRBMs, or 2X-kiloton 1500-mile IRBMs available. " The RA then

sends Request 3, which arrives at 180OZ 1 March 1961:

"Request 3. Supersedes Request 2.

Send 70 2X-kiloton 1500-mile IRBMs to 10 specified destinations. Start

at OOOOZ 10 March 1961. End byOOOOZ13 March 1961. Priority level is 4.

D to get 7 D6 to get 3

D2 to get 7 D7 to get 10

D3 to get 3 D8 to get 11

* to get 7 D9 to get 4

* to get 4 D to get 14."
5 10

B-2

The CP once more asks Step 2, with the answer, "Yes." Step 3 is

answered, "No"; then Step 4 is answered this time, "Cargoes C and C2 meet

requirements." Step 5 asks, "What types of transport aircraft carry C1 or C2 ,

and how many of each can be carried per aircraft?" The CP checks files for the

answer here. These files may simply give relevant cargo and aircraft charac-

teristics, such as cargo weight and linear dimensions, payload of the aircraft,

and space available aboard. If this is the available data, capacities must be

calculated. In this example, three types of aircraft are found to be able to carry

units of C or C2 , and the answer is:
1 2

"A has 2000-mile range, can carry 5 C1 or 7 C2 or a mix.
1

A has 1400-mile range, can carry 2 C1 or 3 C2 or a mix.
2 _ C

A3 has 1000-mile range, can carry 1 C2 only."

These data are set forth in Table 1.

Table 1

Range and Cargo Capacity of Relevant Aircraft Types

AIRCRAFT RANGE {CARGO CAPACITY (UNITS)

TYPE (m) C1 C2

A, 2000 5 7

A2 1400 2 3

A3 1000 - 1

Step 6 asks which destination airfields are open to which types of aircraft; A 1 ,

A 2 and A . The information is drawn from the files on airbase characteristics and

aircraft requirements. It is learned that each destination can receive all three

aircraft types with the following exceptions:

D cannot receive A 1s.

D6 cannot receive A s nor A2 S

D cannot receive any of these aircraft.

B-3

Because D is closed to these aircraft, Step 7 means that the cargo cannot be
9

moved there by any means under CP jurisdiction. The CP so informs the RA,

which sends back Request 4 at 2200Z 1 March 1961:

"Request 4. In Request 3:

(1) Delete phrase 'D8 to get 11, D9 to get 4, D10
to get 14. 8

(2) Insert in place phrase 'D8 to get 13, D10 to
get 16.'

(3) Follow revised Request 3."

The CP then asks Steps 2 to 5 again with the same answers, and Step 6 is

formulated with D9 excluded. Map 1 and Table 2 are then prepared.

Map 1 covers an imaginary territory with the destinations marked on it.

Table 2 shows which aircraft types can land at each destination. Step 7, this time,

is answered affirmatively.

At this point, by asking Step 8, the CP estimates a region within which all

sources, stopovers, and destinations to be used seem likely to be found. This is a

judgment decision, not simply a following of rules. Map 1 may or may not include

the entire region selected; in the present problem it does, but if it did not, a larger

map would have to be prepared and used as a new Map 1.

Step 9 is a search for data on location and quantity of cargo and aircraft, loca-

tion and characteristics of potential stopovers (including sources), a time estimate

on the trip from each possible source to each destination using each aircraft type,

and pertinent current information. The CP thus proceeds to Step 10, which involves

the preparation of Map 2 and Tables 3, 4, and 5.

Map 2 shows as a source (Si) each location which has at least one relevant V
cargo unit and one transport aircraft which can carry it, and can send the cargo

B-4

OI;

1111111 j x

C14 0u

IL

B-5

S3 IN

S03 S06 *

5509
S07 0

MILSS

0 50 00

D2 solo

MAP2.SORCE, ESINAIOSANDSTPOER

B-6H

S, = Sourc

Table 3

Aircraft Types which can be Received at Each Airbose

AIRBASE Al A2 A3

Si. x x x

S2 x x x

S3
SAx x x

54 x x x

S6 x x x

S7 x x

S8 x

S, x

S10 x x x

Si1 x x x

S12 x x

S13 x x

Sol x x

S02 x X

S04 x K

so, x x

S06 x K

SO7 x

so, x x

SO9 x x

solo x

Sol] K K K

SO12 K K

S0 13 K K K

S014 x x

so15 K

B-7

CD~ Ol 10 -l ILn co CL) c0' (N

U n - w)N m

01

(0 0 CD (N Lo '0 - 0 W) -4 C)

U 00 0
-0 (N Ln m) C' O C' U4 - M' (U~~ 4 U, - cI

00
04I C CN XC C4 C(xC xC XC X' XC (

x IC)(IC)(IC IC I (N) C4 (N 0

C1) 41 C(4 (N (N CN (N4 IC IC IC IC I

4 - C x x C IC C IC IC C) (N (CN 0 C
00

ti .j C') x' C' C c') xC x' xN C - x (~ 'o 0

_ (N (N (N IC (N (N X- IC I m 04
a __ _

x x x x x x x x x C C
414 I C I I C. C IC I C)

w x x. x x x x.
u C I C I C I I ' ' ((

m' m' m' IC m' C') C IC C (N IC IC -4

C1 CN C1 4 x C4 C x x x IC IC NC mC 1(IC

I-
>

C-) C') C4) C4 C4) (N C IC C C NC m (N m

'.4 0o C14 - m x P
14 0

x X. x' x

C-) C' 4 -. I4 C- (NC c r

4 - C4 x xx 1(- IC I (

4 ') C) 4n) (n VN V) VC (N -n (N xC xC x o
I'I .0 4

(N~~~ (N (Nk N (C (' C N
4~V O M W ICu C I C I C I I I C I CC

4 ') C' I C N C C C' (()IB-8I(E

Table 5

Possible Routings from Each Source to Each Destination Using Each Aircraft Type

FROM TO A/C SOME POSSIBLE STOPOVERS

S1 D1 A1 (no stopover needed)

S D1 A2 S01, S02, SS, S03.

S D1 A3 So1 -S03, S02-SO3, $5-S03.

S1 D2 A2 SO2, SO4, SOs, S06.

S D2 A3 S0 2-SO7, S04-S07, S04-S05, S06-SO5.

S1 D3 Al

S D3 A2 SO4, SOs, SO6, SO0.

S D3 A3 SO4-SO5, SO6-SO 8, S2-S0 8 -$8.

S D4 A1 S2-S09, S3-SO9, S4-SO9, S4-S7, S06-S09, S08-S0 9.

S, D5 A1 S2-SO9-D4, $3-S09-D4, $4-S09-D4, $ 4-$7-D4, SO6 -S09-D4, S08 -S09-D4.

St D7 Al Two Main Lines: 1) Incl. S0 9-D4-D5. 2) Incl. D2-SI o, S05-SO1 I-S11.

S1 D8 A1 incl. D2-S10 , SO5-SO1 1-S1 I

S] D A2 S02-D2-$10, S0 4-D2-$1 0, S06-D2-$1 0, S05-S9-S11 , S0 5-D3-S01 1-S01 2.

$1 Dio Al Incl. D2-SI0 -SO1 3 (S014), S05-SO1 I-SI 1-D8 (S01 3, S01 4).

52 DI A,

S2 D1 A2

etc.

S13 DlO Al

S13 D10 A3

Code: 1. Single entries (SO, SO2) refer to single stops within those routes from Si to Di which
require just one stop.

2. Plural entries (S01-S03, S02-SO3) refer to series of stops within those routes which
require more than one stop.

3. Parenthetic entries (SO1 3 (SO 4)) refer to alternate stops.

B-9

€i

to some destination specified within the time limit. A stopover (SOl) is an air- j

base that is neither a source nor a destination but that can receive and send off

at least one of the relevant aircraft types, and could be used as a part of some

source-to-source destination route within the time limit. Aircraft may also stop

at sources or destinations if these are equipped to handle the aircraft. (As men-

tioned above, the sample problem assumes that no aircraft will load cargo except

at its starting point, nor unload except at its final destination.)

Table 3, an extension of Table 2, shows which of the selected aircraft types

can land at each source, stopover, and destination in the region of interest.

The main portion of Table 4 shows a (Source) x (Destination) matrix, with

each cell including an entry for each aircraft type. This entry is "x" if:

(a) either the source or the destination cannot receive the

aircraft type;

(b) required stopovers are not available for the trip;

(c) the trip requires longer than the time limit; or

(d) the source has none of the aircraft type on hand.

Otherwise the entry is a digit equal to the days needed for the trip. The bottom

row gives the cargo requirements for each destination.

The right side of the table shows:

(a) the amount of each cargo available at each source (under

column heading CARGO UNITS AVAIL.):

(b) the number of each aircraft type available at each source

(under column heading AIRCRAFT AVAIL.); and

(c) the maximum of available cargo and available aircraft capacity

(under column heading MAX CAPACITY).

This last depends on the capacity data from Table 1.

B-10

Table 5 shows the various possible routings from each source to each desti-

nation using each aircraft type. In this table, for example, a notation such as:

FROM: TO: A/C SOME POSSIBLE ROUTES

S D A1

S DI A2 , o SO 2 S5 SO 3

SD So-SO3 , SO2-SO3 , ' $5-SO3

indicates that to ship from source 1 (S to destination 1 (D1) via aircraft type 1

(A 1), no stopovers are needed and the great circle route is implied. To do the

same with A2 , any of four single stopovers will do; namely, stopover 1, 2, 3, or

source 5. To ship via A each routing must use two stopovers: first, stopover 1

or 2, or source 5; and second, in every case, stopover 3.

In this problem, the CP learns that only 29 C1 and 12 C2 are available at

priority level 4 or lower and can be moved with the three-day time limit imposed.

Since 70 C. are needed, no solution is possible to request 4, and the CP enters Steps
1

11 to 15, essentially asking, "Will releasing some constraint permit a solution?"

Step 12 asks whether a release in the time constraint would lead to adequate

resources to settle the problem. In the present example, the CP learns that if four

days are allowed instead of three, 41 C1 and 37 C2 units will be available at

priority level 4 or lower. The data are recorded, and Step 13 is entered, asking

about a release in priority constraint. The answer here is that, if priority level 3

is included, 57 C1 and 78 C2 can be moved within three days.

Since a change of one grade in time or of one in priority leads to a

possible solution, Step 14, concerned with joint variation of time and priority, is

tested only for trade-off (tightening one constraint while relaxing the other). In

this problem, no trade-off leads to a possible solution.

The RA is thus offered the choice of raising the priority level, increasing

the time limit, or reducing the quantity of cargo required. The first of these is

B-I1

chosen, and Request 5 comes in at 1100Z 2 March 1961. as follows:

"Request 5. In Request 3, revised by Request 4:

(1) Delete phrase 'Priority level is 4.1

(2) Insert in place phrase 'Priority level is 3. ,

(3) Follow revised Request 3. "

V

The CP then finds the answers to Steps 2 and 9 unchanged, while Steps 10

and 11 now have the outcome, "Solution possible."

The CP, proceeding to Step 16, ascertains whether long-.term policy and

intelligence data (at least two weeks old) restrict the field of possible routes

and therefore the problem solutions. In the present example, there are overflight

restrictions that affect the situation. The region of restriction is plotted in Map 3

(similar to Map 2). The routes still possible are set forth in Tables 6 and 7 (similar

to Tables 4 and 5, respectively).

The solution to the routing problem consists of the selection of the best

possible resource allocation to move the cargoes. Step 17 starts the CP on this

trail. In that step, the CP obtains detailed current information about the resource

and other status of all relevant airbases. (Current data are over six hours but

less than two weeks old.) This permits the generation of Map 4 (similar to Map

2) and Tables 8 and 9 (similar to Tables 4 and 5, respectively), which embody

any further reductions imposed by the new information. Step 18 then consists in

finding whether no solutions, one solution, or several solutions are available

within the new constraints. Table 10, whose cell entries are dollar cost rather

than time required for each trip, is otherwise similar to Table 4, and is used to

derive and order these possible solutions. In the present example, with its large

surplus of cargoes and aircraft available, several solutions are possible. In Step

20, the CP puts the best five solutions in order, in terms of the assumed basic

criterion of dollar cost of implementation. (There is nothing sacred about this V
criterion; others will serve equally well.)

B-12

I

The very best one oC these five solutions is selected. In Step 21 the momentary

(less than six hours old) data on weather and intelligence are brought in, and their

effects recorded on Map 5 (similar to Map 2) and Tables 11, 12, and 13 (similar to

Tables 4, 5, and 10, respectively), which may show further changes from the last

level plotted. Step 22 asks whether the best solution has been changed in any way by

the momentary data; in the present problem it has not. Since this is true, the CP

advances to Step 23, implementation of the solution, and sends messages to opera-

tors in charge, giving instructions for carrying out the job. At Step 27, the question

whether cargo loading and flights are to be initiated is settled, "No" (it is too soon,

nearly a week early), and a return to Step 21 occurs. If there are momentary data,

they are recorded on a new or revised Map 5, and Tables 11, 12, and 13; and the

old ones, if useless, are discarded. The CP again advances through Steps 22 and

23 to ask, again, whether flight should be initiated. As soon as "Yes" becomes the

answer, the routing phase ends, and plan monitoring, not here examined, begins.

B-1 3

APPENDIX C

CONTRIBUTORS

!I

Harold W. Adams was born in Bronxville, New York on March 13, 1925. He

received his B. S. degree in 1949 from the University of Connecticut, his M. A. degree

in 1950 from the University of North Carolina, and his Ph. D. degree in History and

Political Science in 1954 from Clark University. From 1943 to 19.46 he served in the

U. S. Navy. From 1951 to 1952 he was a Teaching Fellow at Clark University. He

was on the staff of the Director of Electronics Research, Air Force Cambridge Re-

search Center in Bedford, Massachusetts from 1952 to 1955. From 1955 to 1958 he

was Personnel Manager and Administrator for Hycon Eastern, Inc. He joined MITRE

Corporation in 1958 as Director of Personnel. In 1959 he became a Staff Member of

the System Sciences Department. He is presently Subdepartment Head of Design

Methodology.

Geoffrey Gordon was born in London, England in May 1924. He received his

B. Sc. degree in Physics in 1946 and his M. A. degree in Mathematics in 1949 from

London University, England. From 1950 to 1955 he was a member of the Research

Staff at Research Laboratories of the General Electric Co. , England, on the study of

missile guidance and control systems. On coming to the United States in 1955 he was

at Westinghouse till 1956. From 1956 to 1960 he was a Staff Member of the Bell Tele-

phone Laboratories engaged in the simulation study of switching systems and communi-

cations networks. He joined the IBM Corporation in 1960 as a Staff Member in the

Advanced Systems Development Division in White Plains, New York. He is currently

Manager of Simulation Development responsible for developing simulation programs

required to support studies in new systems concepts. He is a member of the Asso-

ciation of Computer Machinery.

C-1

Charles S. Morrill was born in Boston, Massachusetts on September 17, 1927.

In 1949 he received his B. S. degree in Experimental Psychology from Tufts University.

From 1949 to 1950 he attended the Sorbonne. In 1951 he received his M.A. from

Columbia University in Tests and Measurements, Psychology. He was a Research

and Academic Assistant from 1950 to 1952 at Columbia University. From 1952 to

1953 he was a member of the U. S. Air Force. He served as a member of the Staff

of Tufts University, Department of the Systems Analysis, from 1953 to 1954. From

1954 to 1957 he was a consultant for Globe, Byron and Acorn Corporation. In 1957

he became a Staff Member of Radio Corporation of America, Missile Electronics and

Controls Department. He joined the Staff of MITRE Corporation in 1959 as a member

of the Human Factors Subdepartment of the System Sciences Department. Mr. Morrill

is a member of the American Psychological Association, International Ergonomics,

Kappa Delta Pi, Phi Delta Kappa and Psi Chi.

Peter H. Ten Eyck was born in London, England on March 30, 1932. He re-

ceived his A. B. degree in Physics in 1953 from Princeton University. His graduate

work was in Social Psychology and he received his Ph.D. from Boston University in

1960. He served with the U. S. Army from 1953 to 1955 as a Statistician. From

1956 to 1960 he was associated with Boston University in research in physics and

psychology. ie joined the MITRE Corporation in 1960 as a Staff Member of the

Human Factors Subdepartment of the System Sciences Department. Dr. Ten Eyck

is a member of the American Psychological Association and Psychometric Society.

Irving A. Wallach was born in New York, New York on December 3, 1919. He

received his B. A. degree from New York University in 1947. From 1947 to 1950 he

was a member of the Ph. D. program in Cultural Anthropology at Columbia University.

He was a Social Science Analyst at the U. S. Information Agency in Washington, D. C.

from 1951 to 1953. In 1953 he was a consultant for the Society for Applied Anthro-

pology in New York. He served as a Research Staff Associate for Universal Pictures,

Inc. , in New York from 1953 to 1954. From 1955 to 1956 he was a Research Fellow

at the Ford Foundation in New York. From 1957 to 1959 he was a Research Scientist

C-2

at the Special Operations Research Office in Washington, D. C. In 1959 he joined the

System Development Corporation as a Human Factors Scientist in the SACCS Depart-

ment in Paramus, New Jersey. He is presently Assistant to the Technical Director

for technical product control. Mr. Wallach is a member of the Society for Applied

Anthropology and the American Anthropological Association.

C -3 I

